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xi

The art of teaching, Mark Van Doren said, is the art of assisting discovery. I have tried 
to write a book that assists students in discovering calculus—both for its practical power 
and its surprising beauty. In this edition, as in the first seven editions, I aim to convey 
to the student a sense of the utility of calculus and develop technical competence, but I 
also strive to give some appreciation for the intrinsic beauty of the subject. Newton 
undoubtedly experienced a sense of triumph when he made his great discoveries. I want 
students to share some of that excitement.

The emphasis is on understanding concepts. I think that nearly everybody agrees that 
this should be the primary goal of calculus instruction. In fact, the impetus for the cur-
rent calculus reform movement came from the Tulane Conference in 1986, which for-
mulated as their first recommendation: 

Focus on conceptual understanding.

I have tried to implement this goal through the Rule of Three: “Topics should be pre-
sented geometrically, numerically, and algebraically.” Visualization, numerical and 
graphical experimentation, and other approaches have changed how we teach concep-
tual reasoning in fundamental ways. More recently, the Rule of Three has been expanded 
to become the Rule of Four by emphasizing the verbal, or descriptive, point of view as 
well.

In writing the eighth edition my premise has been that it is possible to achieve con-
ceptual understanding and still retain the best traditions of traditional calculus. The book 
contains elements of reform, but within the context of a traditional curriculum.

I have written several other calculus textbooks that might be preferable for some instruc-
tors. Most of them also come in single variable and multivariable versions.

●	 Calculus, Eighth Edition, is similar to the present textbook except that the exponen-
tial, logarithmic, and inverse trigonometric functions are covered in the second 
semester.

●	 Essential Calculus, Second Edition, is a much briefer book (840 pages), though it 
contains almost all of the topics in Calculus, Eighth Edition. The relative brevity is 
achieved through briefer exposition of some topics and putting some features on the 
website.

●	 Essential Calculus: Early Transcendentals, Second Edition, resembles Essential 
Calculus, but the exponential, logarithmic, and inverse trigonometric functions are 
covered in Chapter 3.

A great discovery solves a great problem but there is a grain of discovery in the 
solution of any problem. Your problem may be modest; but if it challenges your 
curiosity and brings into play your inventive faculties, and if you solve it by your 
own means, you may experience the tension and enjoy the triumph of discovery.

g e o r g e  p o lya

Preface
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xii	 Preface

●	 Calculus: Concepts and Contexts, Fourth Edition, emphasizes conceptual under-
standing even more strongly than this book. The coverage of topics is not encyclo-
pedic and the material on transcendental functions and on parametric equations is 
woven throughout the book instead of being treated in separate chapters.

●	 Calculus: Early Vectors introduces vectors and vector functions in the first semester 
and integrates them throughout the book. It is suitable for students taking engineer-
ing and physics courses concurrently with calculus.

●	 Brief Applied Calculus is intended for students in business, the social sciences, and 
the life sciences.

●	 Biocalculus: Calculus for the Life Sciences is intended to show students in the life 
sciences how calculus relates to biology. 

●	 Biocalculus: Calculus, Probability, and Statistics for the Life Sciences contains all 
the content of Biocalculus: Calculus for the Life Sciences as well as three addi-
tional chapters covering probability and statistics.

The changes have resulted from talking with my colleagues and students at the Univer-
sity of Toronto and from reading journals, as well as suggestions from users and review-
ers. Here are some of the many improvements that I’ve incorporated into this edition:

●	 The data in examples and exercises have been updated to be more timely.

●	 New examples have been added (see Examples 6.1.5, 11.2.5, and 14.3.3, for 
instance). And the solutions to some of the existing examples have been amplified. 

●	 Three new projects have been added: The project Controlling Red Blood Cell Loss 
During Surgery (page 244) describes the ANH procedure, in which blood is 
extracted from the patient before an operation and is replaced by saline solution. 
This dilutes the patient’s blood so that fewer red blood cells are lost during bleed-
ing and the extracted blood is returned to the patient after surgery. The project 
Planes and Birds: Minimizing Energy (page 344) asks how birds can minimize 
power and energy by flapping their wings versus gliding. In the project The Speedo 
LZR Racer (page 936) it is explained that this suit reduces drag in the water and, as 
a result, many swimming records were broken. Students are asked why a small 
decrease in drag can have a big effect on performance.

●	 I have streamlined Chapter 15 (Multiple Integrals) by combining the first two sec-
tions so that iterated integrals are treated earlier.

●	 More than 20% of the exercises in each chapter are new. Here are some of my 
favorites: 2.7.61, 2.8.36–38, 3.1.79–80, 3.11.54, 4.1.69, 4.3.34, 4.3.66, 4.4.80, 
4.7.39, 4.7.67, 5.1.19–20, 5.2.67–68, 5.4.70, 6.1.51, 8.1.39, 12.5.81, 12.6.29–30, 
14.6.65–66. In addition, there are some good new Problems Plus. (See Problems 
12–14 on page 272, Problem 13 on page 363, Problems 16–17 on page 426, and 
Problem 8 on page 986.)
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	 Preface	 xiii

Conceptual Exercises
The most important way to foster conceptual understanding is through the problems 
that we assign. To that end I have devised various types of problems. Some exercise sets 
begin with requests to explain the meanings of the basic concepts of the section. (See, for 
instance, the first few exercises in Sections 2.2, 2.5, 11.2, 14.2, and 14.3.) Similarly, all 
the review sections begin with a Concept Check and a True-False Quiz. Other exercises 
test conceptual understanding through graphs or tables (see Exercises 2.7.17, 2.8.35–38, 
2.8.47–52, 9.1.11–13, 10.1.24–27, 11.10.2, 13.2.1–2, 13.3.33–39, 14.1.1–2, 14.1.32–38,  
14.1.41–44, 14.3.3–10, 14.6.1–2, 14.7.3–4, 15.1.6–8, 16.1.11–18, 16.2.17–18, and 
16.3.1–2).

Another type of exercise uses verbal description to test conceptual understanding 
(see Exercises 2.5.10, 2.8.66, 4.3.69–70, and 7.8.67). I particularly value problems that 
combine and compare graphical, numerical, and algebraic approaches (see Exercises 
2.6.45–46, 3.7.27, and 9.4.4).

Graded Exercise Sets
Each exercise set is carefully graded, progressing from basic conceptual exercises and 
skill-development problems to more challenging problems involving applications and 
proofs.

Real-World Data
My assistants and I spent a great deal of time looking in libraries, contacting companies 
and government agencies, and searching the Internet for interesting real-world data to 
introduce, motivate, and illustrate the concepts of calculus. As a result, many of the 
examples and exercises deal with functions defined by such numerical data or graphs. 
See, for instance, Figure 1 in Section 1.1 (seismograms from the Northridge earthquake), 
Exercise 2.8.35 (unemployment rates), Exercise 5.1.16 (velocity of the space shuttle 
Endeavour), and Figure 4 in Section 5.4 (San Francisco power consumption). Functions 
of two variables are illustrated by a table of values of the wind-chill index as a function 
of air temperature and wind speed (Example 14.1.2). Partial derivatives are introduced 
in Section 14.3 by examining a column in a table of values of the heat index (perceived 
air temperature) as a function of the actual temperature and the relative humidity. This 
example is pursued further in connection with linear approximations (Example 14.4.3). 
Directional derivatives are introduced in Section 14.6 by using a temperature contour 
map to estimate the rate of change of temperature at Reno in the direction of Las Vegas. 
Double integrals are used to estimate the average snowfall in Colorado on December 
20–21, 2006 (Example 15.1.9). Vector fields are introduced in Section 16.1 by depictions 
of actual velocity vector fields showing San Francisco Bay wind patterns.

Projects
One way of involving students and making them active learners is to have them work 
(perhaps in groups) on extended projects that give a feeling of substantial accomplish-
ment when completed. I have included four kinds of projects: Applied Projects involve 
applications that are designed to appeal to the imagination of students. The project after 
Section 9.3 asks whether a ball thrown upward takes longer to reach its maximum height 
or to fall back to its original height. (The answer might surprise you.) The project after 
Section 14.8 uses Lagrange multipliers to determine the masses of the three stages of 
a rocket so as to minimize the total mass while enabling the rocket to reach a desired 
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velocity. Laboratory Projects involve technology; the one following Section 10.2 shows 
how to use Bézier curves to design shapes that represent letters for a laser printer. Writ-
ing Projects ask students to compare present-day methods with those of the founders of 
calculus—Fermat’s method for finding tangents, for instance. Suggested references are 
supplied. Discovery Projects anticipate results to be discussed later or encourage dis-
covery through pattern recognition (see the one following Section 7.6). Others explore 
aspects of geometry: tetrahedra (after Section 12.4), hyperspheres (after Section 15.6), 
and intersections of three cylinders (after Section 15.7). Additional projects can be found 
in the Instructor’s Guide (see, for instance, Group Exercise 5.1: Position from Samples).

Problem Solving
Students usually have difficulties with problems for which there is no single well-defined 
procedure for obtaining the answer. I think nobody has improved very much on George 
Polya’s four-stage problem-solving strategy and, accordingly, I have included a version 
of his problem-solving principles following Chapter 1. They are applied, both explicitly 
and implicitly, throughout the book. After the other chapters I have placed sections called 
Problems Plus, which feature examples of how to tackle challenging calculus problems. 
In selecting the varied problems for these sections I kept in mind the following advice 
from David Hilbert: “A mathematical problem should be difficult in order to entice us, 
yet not inaccessible lest it mock our efforts.” When I put these challenging problems on 
assignments and tests I grade them in a different way. Here I reward a student signifi-
cantly for ideas toward a solution and for recognizing which problem-solving principles 
are relevant.

Technology
The availability of technology makes it not less important but more important to clearly 
understand the concepts that underlie the images on the screen. But, when properly used, 
graphing calculators and computers are powerful tools for discovering and understand-
ing those concepts. This textbook can be used either with or without technology and I 
use two special symbols to indicate clearly when a particular type of machine is required. 
The icon ; indicates an exercise that definitely requires the use of such technology, 
but that is not to say that it can’t be used on the other exercises as well. The symbol CAS  
is reserved for problems in which the full resources of a computer algebra system (like 
Maple, Mathematica, or the TI-89) are required. But technology doesn’t make pencil 
and paper obsolete. Hand calculation and sketches are often preferable to technology for 
illustrating and reinforcing some concepts. Both instructors and students need to develop 
the ability to decide where the hand or the machine is appropriate.

Tools for Enriching Calculus
TEC is a companion to the text and is intended to enrich and complement its contents. 
(It is now accessible in the eBook via CourseMate and Enhanced WebAssign. Selected 
Visuals and Modules are available at www.stewartcalculus.com.) Developed by Harvey 
Keynes, Dan Clegg, Hubert Hohn, and myself, TEC uses a discovery and exploratory 
approach. In sections of the book where technology is particularly appropriate, marginal 
icons direct students to TEC Modules that provide a laboratory environment in which 
they can explore the topic in different ways and at different levels. Visuals are anima-
tions of figures in text; Modules are more elaborate activities and include exercises. 
Instructors can choose to become involved at several different levels, ranging from sim-
ply encouraging students to use the Visuals and Modules for independent exploration, 
to assigning specific exercises from those included with each Module, or to creating 
additional exercises, labs, and projects that make use of the Visuals and Modules.
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TEC also includes Homework Hints for representative exercises (usually odd-num-
bered) in every section of the text, indicated by printing the exercise number in red. 
These hints are usually presented in the form of questions and try to imitate an effective 
teaching assistant by functioning as a silent tutor. They are constructed so as not to reveal 
any more of the actual solution than is minimally necessary to make further progress.

Enhanced WebAssign
Technology is having an impact on the way homework is assigned to students, particu-
larly in large classes. The use of online homework is growing and its appeal depends 
on ease of use, grading precision, and reliability. With the Eighth Edition we have been 
working with the calculus community and WebAssign to develop an online homework 
system. Up to 70% of the exercises in each section are assignable as online homework, 
including free response, multiple choice, and multi-part formats. 

The system also includes Active Examples, in which students are guided in step-by-
step tutorials through text examples, with links to the textbook and to video solutions.

Website
Visit CengageBrain.com or stewartcalculus.com for these additional materials:

●	 Homework Hints

●	 Algebra Review

●	 Lies My Calculator and Computer Told Me

●	 History of Mathematics, with links to the better historical websites

●	 Additional Topics (complete with exercise sets): Fourier Series, Formulas for the 
Remainder Term in Taylor Series, Rotation of Axes

●	 Archived Problems (Drill exercises that appeared in previous editions, together with 
their solutions)

●	 Challenge Problems (some from the Problems Plus sections from prior editions)

●	 Links, for particular topics, to outside Web resources

●	 Selected Visuals and Modules from Tools for Enriching Calculus (TEC)

The book begins with four diagnostic tests, in Basic Algebra, Analytic Geometry, Func-
tions, and Trigonometry.

This is an overview of the subject and includes a list of questions to motivate the study 
of calculus.

From the beginning, multiple representations of functions are stressed: verbal, numeri-
cal, visual, and algebraic. A discussion of mathematical models leads to a review of the 
standard functions, including exponential and logarithmic functions, from these four 
points of view.

The material on limits is motivated by a prior discussion of the tangent and velocity 
problems. Limits are treated from descriptive, graphical, numerical, and algebraic points 
of view. Section 2.4, on the precise definition of a limit, is an optional section. Sections 

Diagnostic Tests

A Preview of Calculus

1  Functions and Models

2 L imits and Derivatives
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2.7 and 2.8 deal with derivatives (especially with functions defined graphically and 
numerically) before the differentiation rules are covered in Chapter 3. Here the exam-
ples and exercises explore the meanings of derivatives in various contexts. Higher deriva-
tives are introduced in Section 2.8.

All the basic functions, including exponential, logarithmic, and inverse trigonometric 
functions, are differentiated here. When derivatives are computed in applied situations, 
students are asked to explain their meanings. Exponential growth and decay are now 
covered in this chapter.

The basic facts concerning extreme values and shapes of curves are deduced from the 
Mean Value Theorem. Graphing with technology emphasizes the interaction between 
calculus and calculators and the analysis of families of curves. Some substantial optimi-
zation problems are provided, including an explanation of why you need to raise your 
head 42° to see the top of a rainbow.

The area problem and the distance problem serve to motivate the definite integral, with 
sigma notation introduced as needed. (Full coverage of sigma notation is provided in 
Appendix E.) Emphasis is placed on explaining the meanings of integrals in various 
contexts and on estimating their values from graphs and tables.

Here I present the applications of integration—area, volume, work, average value—that 
can reasonably be done without specialized techniques of integration. General methods 
are emphasized. The goal is for students to be able to divide a quantity into small pieces, 
estimate with Riemann sums, and recognize the limit as an integral.

All the standard methods are covered but, of course, the real challenge is to be able to 
recognize which technique is best used in a given situation. Accordingly, in Section 7.5, 
I present a strategy for integration. The use of computer algebra systems is discussed in 
Section 7.6.

Here are the applications of integration—arc length and surface area—for which it is 
useful to have available all the techniques of integration, as well as applications to biol-
ogy, economics, and physics (hydrostatic force and centers of mass). I have also 
included a section on probability. There are more applications here than can realistically 
be covered in a given course. Instructors should select applications suitable for their 
students and for which they themselves have enthusiasm.

Modeling is the theme that unifies this introductory treatment of differential equations. 
Direction fields and Euler’s method are studied before separable and linear equations are 
solved explicitly, so that qualitative, numerical, and analytic approaches are given equal 
consideration. These methods are applied to the exponential, logistic, and other models 
for population growth. The first four or five sections of this chapter serve as a good 
introduction to first-order differential equations. An optional final section uses predator-
prey models to illustrate systems of differential equations.

This chapter introduces parametric and polar curves and applies the methods of calculus 
to them. Parametric curves are well suited to laboratory projects; the two presented here 
involve families of curves and Bézier curves. A brief treatment of conic sections in polar 
coordinates prepares the way for Kepler’s Laws in Chapter 13.

3 D ifferentiation Rules

4 A pplications of Differentiation

5 I ntegrals

6 A pplications of Integration

7  Techniques of Integration

8 F urther Applications 
of Integration

9 D ifferential Equations

10  Parametric Equations 
and Polar Coordinates
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The convergence tests have intuitive justifications (see page 719) as well as formal 
proofs. Numerical estimates of sums of series are based on which test was used to prove 
convergence. The emphasis is on Taylor series and polynomials and their applications 
to physics. Error estimates include those from graphing devices.

The material on three-dimensional analytic geometry and vectors is divided into two 
chapters. Chapter 12 deals with vectors, the dot and cross products, lines, planes, and 
surfaces.

This chapter covers vector-valued functions, their derivatives and integrals, the length 
and curvature of space curves, and velocity and acceleration along space curves, culmi-
nating in Kepler’s laws.

Functions of two or more variables are studied from verbal, numerical, visual, and alge-
braic points of view. In particular, I introduce partial derivatives by looking at a specific 
column in a table of values of the heat index (perceived air temperature) as a function 
of the actual temperature and the relative humidity.

Contour maps and the Midpoint Rule are used to estimate the average snowfall and 
average temperature in given regions. Double and triple integrals are used to compute 
probabilities, surface areas, and (in projects) volumes of hyperspheres and volumes of 
intersections of three cylinders. Cylindrical and spherical coordinates are introduced in 
the context of evaluating triple integrals.

Vector fields are introduced through pictures of velocity fields showing San Francisco 
Bay wind patterns. The similarities among the Fundamental Theorem for line integrals, 
Green’s Theorem, Stokes’ Theorem, and the Divergence Theorem are emphasized.

Since first-order differential equations are covered in Chapter 9, this final chapter deals 
with second-order linear differential equations, their application to vibrating springs and 
electric circuits, and series solutions.

Calculus, Early Transcendentals, Eighth Edition, is supported by a complete set of 
ancillaries developed under my direction. Each piece has been designed to enhance 
student understanding and to facilitate creative instruction. The tables on pages xxi–xxii 
describe each of these ancillaries.

The preparation of this and previous editions has involved much time spent reading the 
reasoned (but sometimes contradictory) advice from a large number of astute reviewers. 
I greatly appreciate the time they spent to understand my motivation for the approach 
taken. I have learned something from each of them.

Eighth Edition Reviewers
Jay Abramson, �Arizona State University
Adam Bowers, �University of California San Diego
Neena Chopra, �The Pennsylvania State University

11 I nfinite Sequences and Series

12 V ectors and the  
Geometry of Space

13 V ector Functions

14  Partial Derivatives

15 M ultiple Integrals

16 V ector Calculus

17 S econd-Order 
Differential Equations
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■ Electronic items  ■ Printed items	 (Table continues on page xxii)

Instructor’s Guide
by Douglas Shaw

ISBN 978-1-305-39371-4

Each section of the text is discussed from several viewpoints. 
The Instructor’s Guide contains suggested time to allot, points 
to stress, text discussion topics, core materials for lecture, 
workshop/discussion suggestions, group work exercises in  
a form suitable for handout, and suggested homework  
assignments.

Complete Solutions Manual

Single Variable Early Transcendentals
By Daniel Anderson, Jeffery A. Cole, and Daniel Drucker

ISBN 978-1-305-27239-2

Multivariable
By Dan Clegg and Barbara Frank

ISBN 978-1-305-27611-6

Includes worked-out solutions to all exercises in the text.

Printed Test Bank
By William Steven Harmon

ISBN 978-1-305-38722-5

Contains text-specific multiple-choice and free response test 
items.

Cengage Learning Testing Powered by Cognero
(login.cengage.com)

This flexible online system allows you to author, edit, and 
manage test bank content from multiple Cengage Learning 
solutions; create multiple test versions in an instant; and 
deliver tests from your LMS, your classroom, or wherever you 
want.

Stewart Website
www.stewartcalculus.com

Contents: Homework Hints  n  Algebra Review  n  Additional 
Topics  n  Drill exercises  n  Challenge Problems  n  Web 
Links  n  History of Mathematics  n  Tools for Enriching  
Calculus (TEC) 

TEC  TOOLS FOR ENRICHING™ CALCULUS
By James Stewart, Harvey Keynes, Dan Clegg, and developer 
Hubert Hohn

Tools for Enriching Calculus (TEC) functions as both a 
powerful tool for instructors and as a tutorial environment  
in which students can explore and review selected topics. The 
Flash simulation modules in TEC include instructions, written 
and audio explanations of the concepts, and exercises. TEC  
is accessible in the eBook via CourseMate and Enhanced 
WebAssign. Selected Visuals and Modules are available at 
www.stewartcalculus.com.

  Enhanced WebAssign®
www.webassign.net

Printed Access Code: ISBN 978-1-285-85826-5

Instant Access Code ISBN: 978-1-285-85825-8

Exclusively from Cengage Learning, Enhanced WebAssign 
offers an extensive online program for Stewart’s Calculus  
to encourage the practice that is so critical for concept 
mastery. The meticulously crafted pedagogy and exercises 
in our proven texts become even more effective in Enhanced 
WebAssign, supplemented by multimedia tutorial support and 
immediate feedback as students complete their assignments. 
Key features include: 

n  �Thousands of homework problems that match your text-
book’s end-of-section exercises

n � Opportunities for students to review prerequisite skills and 
content both at the start of the course and at the beginning 
of each section

n � Read It eBook pages, Watch It videos, Master It tutorials, 
and Chat About It links

n � A customizable Cengage YouBook with highlighting, note-
taking, and search features, as well as links to multimedia 
resources

n � Personal Study Plans (based on diagnostic quizzing) that 
identify chapter topics that students will need to master

n � A WebAssign Answer Evaluator that recognizes and accepts 
equivalent mathematical responses in the same way an 
instructor grades

n � A Show My Work feature that gives instructors the option 
of seeing students’ detailed solutions

n � Visualizing Calculus Animations, Lecture Videos, and more
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Cengage Customizable YouBook

YouBook is an eBook that is both interactive and customiz-
able. Containing all the content from Stewart’s Calculus,  
YouBook features a text edit tool that allows instructors to 
modify the textbook narrative as needed. With YouBook, 
instructors can quickly reorder entire sections and chapters 
or hide any content they don’t teach to create an eBook that 
perfectly matches their syllabus. Instructors can further 
customize the text by adding instructor-created or YouTube 
video links. Additional media assets include animated figures, 
video clips, highlighting and note-taking features, and more. 
YouBook is available within Enhanced WebAssign.

CourseMate

CourseMate is a perfect self-study tool for students, and 
requires no set up from instructors. CourseMate brings course 
concepts to life with interactive learning, study, and exam 
preparation tools that support the printed textbook. Course-
Mate for Stewart’s Calculus includes an interactive eBook, 
Tools for Enriching Calculus, videos, quizzes, flashcards, 
and more. For instructors, CourseMate includes Engagement 
Tracker, a first-of-its-kind tool that monitors student  
engagement.

CengageBrain.com

To access additional course materials, please visit  
www.cengagebrain.com. At the CengageBrain.com home 
page, search for the ISBN of your title (from the back cover of 
your book) using the search box at the top of the page. This 
will take you to the product page where these resources can 
be found.

Student Solutions Manual
Single Variable Early Transcendentals
By Daniel Anderson, Jeffery A. Cole, and Daniel Drucker

ISBN 978-1-305-27242-2

Multivariable
By Dan Clegg and Barbara Frank

ISBN 978-1-305-27182-1

Provides completely worked-out solutions to all odd- 
numbered exercises in the text, giving students a chance to 

check their answer and ensure they took the correct steps  
to arrive at the answer. The Student Solutions Manual  
can be ordered or accessed online as an eBook at  
www.cengagebrain.com by searching the ISBN.

Study Guide
Single Variable Early Transcendentals
By Richard St. Andre

ISBN 978-1-305-27914-8

Multivariable
By Richard St. Andre

ISBN 978-1-305-27184-5

For each section of the text, the Study Guide provides students 
with a brief introduction, a short list of concepts to master, 
and summary and focus questions with explained answers. 
The Study Guide also contains “Technology Plus” questions 
and multiple-choice “On Your Own” exam-style questions. 
The Study Guide can be ordered or accessed online as an 
eBook at www.cengagebrain.com by searching the ISBN.

A Companion to Calculus
By Dennis Ebersole, Doris Schattschneider, Alicia Sevilla,  
and Kay Somers

ISBN 978-0-495-01124-8

Written to improve algebra and problem-solving skills of 
students taking a calculus course, every chapter in this 
companion is keyed to a calculus topic, providing concep-
tual background and specific algebra techniques needed to 
understand and solve calculus problems related to that topic. 
It is designed for calculus courses that integrate the review of 
precalculus concepts or for individual use. Order a copy of 
the text or access the eBook online at www.cengagebrain.com 
by searching the ISBN.

Linear Algebra for Calculus
by Konrad J. Heuvers, William P. Francis, John H. Kuisti, 
Deborah F. Lockhart, Daniel S. Moak, and Gene M. Ortner

ISBN 978-0-534-25248-9

This comprehensive book, designed to supplement the calcu-
lus course, provides an introduction to and review of the basic 
ideas of linear algebra. Order a copy of the text or access 
the eBook online at www.cengagebrain.com by searching the 
ISBN.

■ Electronic items  ■ Printed items	
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To the Student

Reading a calculus textbook is different from reading a 
newspaper or a novel, or even a physics book. Don’t be dis-
couraged if you have to read a passage more than once  
in order to understand it. You should have pencil and paper 
and calculator at hand to sketch a diagram or make a  
calculation.

Some students start by trying their homework problems 
and read the text only if they get stuck on an exercise. I sug-
gest that a far better plan is to read and understand a section 
of the text before attempting the exercises. In particular, you 
should look at the definitions to see the exact meanings of 
the terms. And before you read each example, I suggest that 
you cover up the solution and try solving the problem your-
self. You’ll get a lot more from looking at the solution if 
you do so.

Part of the aim of this course is to train you to think logi-
cally. Learn to write the solutions of the exercises in a con-
nected, step-by-step fashion with explanatory sentences—
not just a string of disconnected equations or formulas.

The answers to the odd-numbered exercises appear at the 
back of the book, in Appendix I. Some exercises ask for a 
verbal explanation or interpretation or description. In such 
cases there is no single correct way of expressing the 
answer, so don’t worry that you haven’t found the definitive 
answer. In addition, there are often several different forms 
in which to express a numerical or algebraic answer, so if 
your answer differs from mine, don’t immediately assume 
you’re wrong. For example, if the answer given in the back 
of the book is s2 2 1 and you obtain 1y(1 1 s2 ), then 
you’re right and rationalizing the denominator will show 
that the answers are equivalent.

The icon ; indicates an exercise that definitely requires 
the use of either a graphing calculator or a computer with 
graphing software. But that doesn’t mean that graphing 
devices can’t be used to check your work on the other exer-
cises as well. The symbol CAS  is reserved for problems in 

which the full resources of a computer algebra system (like 
Maple, Mathematica, or the TI-89) are required.

You will also encounter the symbol |, which warns you 
against committing an error. I have placed this symbol in 
the margin in situations where I have observed that a large 
proportion of my students tend to make the same mistake.

Tools for Enriching Calculus, which is a companion to 
this text, is referred to by means of the symbol TEC  and can 
be accessed in the eBook via Enhanced WebAssign and 
CourseMate (selected Visuals and Modules are available at 
www.stewartcalculus.com). It directs you to modules in 
which you can explore aspects of calculus for which the 
computer is particularly useful. 

You will notice that some exercise numbers are printed 
in red: 5. This indicates that Homework Hints are available 
for the exercise. These hints can be found on stewartcalcu-
lus.com as well as Enhanced WebAssign and CourseMate. 
The homework hints ask you questions that allow you to 
make progress toward a solution without actually giving 
you the answer. You need to pursue each hint in an active 
manner with pencil and paper to work out the details. If a 
particular hint doesn’t enable you to solve the problem, you 
can click to reveal the next hint. 

I recommend that you keep this book for reference pur-
poses after you finish the course. Because you will likely 
forget some of the specific details of calculus, the book will 
serve as a useful reminder when you need to use calculus in 
subsequent courses. And, because this book contains more 
material than can be covered in any one course, it can also 
serve as a valuable resource for a working scientist or  
engineer.

Calculus is an exciting subject, justly considered to be 
one of the greatest achievements of the human intellect. I 
hope you will discover that it is not only useful but also 
intrinsically beautiful.

james stewart
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xxiv

Advances in technology continue to bring a wider variety of tools for 
doing mathematics. Handheld calculators are becoming more pow-
erful, as are software programs and Internet resources. In addition, 
many mathematical applications have been released for smartphones 
and tablets such as the iPad.

Some exercises in this text are marked with a graphing icon ;, 
which indicates that the use of some technology is required. Often this 
means that we intend for a graphing device to be used in drawing the 
graph of a function or equation. You might also need technology to 
find the zeros of a graph or the points of intersection of two graphs. 
In some cases we will use a calculating device to solve an equation or 
evaluate a definite integral numerically. Many scientific and graphing 
calculators have these features built in, such as the Texas Instruments 
TI-84 or TI-Nspire CX. Similar calculators are made by Hewlett Pack-
ard, Casio, and Sharp.
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You can also use computer software such  
as Graphing Calculator by Pacific Tech 
(www.pacifict.com) to perform many of these 
functions, as well as apps for phones and 
tablets, like Quick Graph (Colombiamug) or 
Math-Studio (Pomegranate Apps). Similar 
functionality is available using a web interface 
at WolframAlpha.com.
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Calculators, Computers, and 
Other Graphing Devices
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The CAS  icon is reserved for problems in which the full resources of 
a computer algebra system (CAS) are required. A CAS is capable of 
doing mathematics (like solving equations, computing derivatives or 
integrals) symbolically rather than just numerically.

Examples of well-established computer algebra systems are the com-
puter software packages Maple and Mathematica. The WolframAlpha 
website uses the Mathematica engine to provide CAS functionality  
via the Web.

Many handheld graphing calculators have CAS capabilities, such 
as the TI-89 and TI-Nspire CX CAS from Texas Instruments. Some 
tablet and smartphone apps also provide these capabilities, such as the 
previously mentioned MathStudio.

In general, when we use the term “calculator” in this book, we mean 
the use of any of the resources we have mentioned.
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xxvi

Success in calculus depends to a large extent on knowledge of the mathematics that 
precedes calculus: algebra, analytic geometry, functions, and trigonometry. The fol-
lowing tests are intended to diagnose weaknesses that you might have in these areas. 
After taking each test you can check your answers against the given answers and, if 
necessary, refresh your skills by referring to the review materials that are provided.

A

		  1.	� Evaluate each expression without using a calculator.

	 (a)	 s23d4	 (b)	 234	 (c)	 324

	 (d)	
523

521 	 (e)	 S 2

3D
22

	 (f)	 1623y4

		  2.	�� Simplify each expression. Write your answer without negative exponents.

	 (a)	 s200 2 s32 	

	 (b)	 s3a3b3ds4ab2d2

	 (c)	 S 3x 3y2y 3

x 2y21y2D22

		  3.	� Expand and simplify.

			   (a)	 3sx 1 6d 1 4s2x 2 5d	 (b)	 sx 1 3ds4x 2 5d

			   (c)	 ssa 1 sb dssa 2 sb d	 (d)	 s2x 1 3d2

			   (e)	 sx 1 2d3

		  4.	� Factor each expression.

	 (a)	 4x 2 2 25	 (b)	 2x 2 1 5x 2 12

	 (c)	 x 3 2 3x 2 2 4x 1 12	 (d)	 x 4 1 27x

	 (e)	 3x 3y2 2 9x 1y2 1 6x21y2	 (f)	 x 3y 2 4xy

		  5.	 �Simplify the rational expression.

			   (a)	
x 2 1 3x 1 2

x 2 2 x 2 2
	 (b)	

2x 2 2 x 2 1

x 2 2 9
?

x 1 3

2x 1 1

			   (c)	
x 2

x 2 2 4
2

x 1 1

x 1 2
	 (d)	

y

x
2

x

y

1

y
2

1

x

Diagnostic Tests
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	D iagnostic Tests	 xxvii

		  6.	� Rationalize the expression and simplify.

	 (a)	
s10 

s5 2 2
	 (b)	

s4 1 h 2 2

h

		  7.	� Rewrite by completing the square.

	 (a)	 x 2 1 x 1 1	 (b)	 2x 2 2 12x 1 11

		  8.	� Solve the equation. (Find only the real solutions.)

	 (a)	 x 1 5 − 14 2 1
2 x	 (b)	

2x

x 1 1
−

2x 2 1

x

	 (c)	 x 2 2 x 2 12 − 0	 (d)	 2x 2 1 4x 1 1 − 0

	 (e)	 x 4 2 3x 2 1 2 − 0	 (f)	 3| x 2 4 | − 10

	 (g)	 2xs4 2 xd21y2 2 3s4 2 x − 0

		  9.	�� Solve each inequality. Write your answer using interval notation.

	 (a)	 24 , 5 2 3x < 17	 (b)	 x 2 , 2x 1 8

	 (c)	 xsx 2 1dsx 1 2d . 0	 (d)	 | x 2 4 | , 3

	 (e)	
2x 2 3

x 1 1
< 1

		  10.	� State whether each equation is true or false.

	 (a)	 sp 1 qd2 − p2 1 q 2	 (b)	 sab − sa sb 

	 (c)	 sa2 1 b2 − a 1 b	 (d)	
1 1 TC

C
− 1 1 T

	 (e)	
1

x 2 y
−

1

x
2

1

y
	 (f)	

1yx

ayx 2 byx
−

1

a 2 b

answers to diagnostic test a: algebra

	 1.	� (a)	 81		  (b)	 281	 (c)	 1
81

		� (d)	 25		  (e)	 9
4	 (f)	 1

8

	 2.	� (a)	 6s2 	 (b)	 48a5b7	 (c)	
x

9y7

	 3.	� (a)	 11x 2 2	 (b)	 4x 2 1 7x 2 15

		� (c)	 a 2 b	 (d)	 4x 2 1 12x 1 9

		� (e)	 x 3 1 6x 2 1 12x 1 8

	 4.	� (a)	 s2x 2 5ds2x 1 5d	 (b)	 s2x 2 3dsx 1 4d
		 (c)	 sx 2 3dsx 2 2dsx 1 2d	 (d)	 xsx 1 3dsx 2 2 3x 1 9d
		 (e)	 3x21y2sx 2 1dsx 2 2d	 (f)	 xysx 2 2dsx 1 2d

	 5.	� (a)	
x 1 2

x 2 2
	 (b)	

x 2 1

x 2 3

		 (c)	
1

x 2 2
	 (d)	 2sx 1 yd

	 6.	� (a)	 5s2 1 2s10 	 (b)	
1

s4 1 h 1 2

	 7.	� (a)	 sx 1 1
2d2

1 3
4	 (b)	 2sx 2 3d2 2 7

	 8.	� (a)	 6		  (b)	 1	 (c)	 23, 4

		 (d)	 21 6 1
2s2 	 (e)	 61, 6s2 	 (f)	 2

3, 22
3

		 (g)	 12
5

	 9.	� (a)	 f24, 3d	 (b)	 s22, 4d
		 (c)	 s22, 0d ø s1, `d	 (d)	 s1, 7d
		 (e)	 s21, 4g

	 10.	� (a)	 False	 (b)	 True	 (c)	 False
		 (d)	 False	 (e)	 False	 (f)	 True

If you had difficulty with these problems, you may wish to consult the  
Review of Algebra on the website www.stewartcalculus.com.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



xxviii	 Diagnostic Tests

answers to diagnostic test b: analytic geometry

	 1.	� (a)	 y − 23x 1 1	 (b)	 y − 25

		 (c)	 x − 2	 (d)	 y − 1
2 x 2 6

	 2.	 sx 1 1d2 1 sy 2 4d2 − 52

	 3.	� Center s3, 25d, radius 5

	 4.	� (a)	 24
3

		 (b)	 4x 1 3y 1 16 − 0; x-intercept 24, y-intercept 216
3

		 (c)	 s21, 24d
		 (d)	 20

		 (e)	 3x 2 4y − 13

		  (f)	 sx 1 1d2 1 sy 1 4d2 − 100

	 5.	

6et-dtba05a-f
5.20.06

y

x1 2
0

y

x0

y

x0 4

3

_1

2

y

x
0

y

x0 4_4

y

x0 2

1

(a) (b) (c)

(d) (e) (f)

_1

3
2

_2

y=≈-1

≈+¥=4

 

y=1-   x1
2

B

		  1.	� Find an equation for the line that passes through the point s2, 25d and

	 (a)	 has slope 23

	 (b)	 is parallel to the x-axis

	 (c)	 is parallel to the y-axis

	 (d)	 is parallel to the line 2x 2 4y − 3

		  2.	� Find an equation for the circle that has center s21, 4d and passes through the point s3, 22d.

		  3.	� Find the center and radius of the circle with equation x 2 1 y 2 2 6x 1 10y 1 9 − 0.

		  4.	� Let As27, 4d and Bs5, 212d be points in the plane.

	 (a)	� Find the slope of the line that contains A and B.

	 (b)	� Find an equation of the line that passes through A and B. What are the intercepts?

	 (c)	 Find the midpoint of the segment AB.

	 (d)	 Find the length of the segment AB.

	 (e)	 Find an equation of the perpendicular bisector of AB.

	 (f)	 Find an equation of the circle for which AB  is a diameter.

		  5.	� Sketch the region in the xy-plane defined by the equation or inequalities.

	 (a)	 21 < y < 3	 (b)	 | x | , 4 and | y | , 2

	 (c)	 y , 1 2 1
2 x	 (d)	 y > x 2 2 1

	 (e)	 x 2 1 y 2 , 4	 (f)	 9x 2 1 16y 2 − 144

If you had difficulty with these problems, you may wish to consult  
the review of analytic geometry in Appendixes B and C.
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	D iagnostic Tests	 xxix

C

		  1.	� The graph of a function f  is given at the left.
	 (a)	 State the value of f s21d.
	 (b)	 Estimate the value of f s2d.
	 (c)	 For what values of x is f sxd − 2?
	 (d)	 Estimate the values of x such that f sxd − 0.
	 (e)	 State the domain and range of f.

		  2.	 If f sxd − x 3, evaluate the difference quotient 
f s2 1 hd 2 f s2d

h
 and simplify your answer.

		  3.	 Find the domain of the function.

	 (a)	 f sxd −
2x 1 1

x 2 1 x 2 2
	 (b)	 tsxd −

s3 x 

x 2 1 1
	 (c)	 hsxd − s4 2 x 1 sx 2 2 1

		  4.	 How are graphs of the functions obtained from the graph of f ?

	 (a)	 y − 2f sxd	 (b)	 y − 2 f sxd 2 1	 (c)	 y − f sx 2 3d 1 2

		  5.	 Without using a calculator, make a rough sketch of the graph.

	 (a)	 y − x 3	 (b)	 y − sx 1 1d3	 (c)	 y − sx 2 2d3 1 3

	 (d)	 y − 4 2 x 2	 (e)	 y − sx  	 (f)	 y − 2sx  

	 (g)	 y − 22x	 (h)	 y − 1 1 x21

		  6.	 Let f sxd − H1 2 x 2

2x 1 1

if x < 0

if x . 0

	 (a)	 Evaluate f s22d and f s1d.	 (b)	 Sketch the graph of f.

		  7.	� If f sxd − x 2 1 2x 2 1 and tsxd − 2x 2 3, find each of the following functions.
	 (a)	 f 8 t	 (b)	 t 8 f 	 (c)	 t 8 t 8 t

y

0 x

1

1

Figure For Problem �1

answers to diagnostic test C: functions

	 1.	� (a)	 22		 (b)	 2.8
		�  (c)	 23, 1	 (d)	 22.5, 0.3
		 (e)	 f23, 3g, f22, 3g

	 2.	 12 1 6h 1 h 2

	 3.	� (a)	 s2`, 22d ø s22, 1d ø s1, `d
		 (b)	 s2`, `d
		 (c)	 s2`, 21g ø f1, 4g

	 4.	� (a)	 Reflect about the x-axis
		 (b)	� Stretch vertically by a factor of 2, then shift 1 unit  

downward
		 (c)	 Shift 3 units to the right and 2 units upward

	 5.	

6et-dtCa05a-h
5.20.06

y

x0

(a)

1

1

y(b)

x0

1

_1

(c) y

x0

(2, 3)

y(d)

x0

4

2

(e) y

x0 1

(f ) y

x0 1

(g) y

x
0

1
_1

y(h)

x0

1

1
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xxx	 Diagnostic Tests

   	6.	� (a)	 23, 3		  (b)	

4c3DTCax06b
10/30/08

y

x0_1

1

	 7.	(a)	 s f 8 tdsxd − 4x 2 2 8x 1 2	

		 (b)	 st 8 f dsxd − 2x 2 1 4x 2 5

		 (c)	 st 8 t 8 tdsxd − 8x 2 21

D

		  1.	� Convert from degrees to radians.

	 (a)	 3008 	 (b)	 2188

		  2.	 Convert from radians to degrees.

	 (a)	 5�y6	 (b)	 2

		  3.	� Find the length of an arc of a circle with radius 12 cm if the arc subtends a central angle  
of 308.

		  4.	 Find the exact values.

	 (a)	 tans�y3d	 (b)	 sins7�y6d	 (c)	 secs5�y3d

	 	 5.	� Express the lengths a and b in the figure in terms of �.

		  6.	� If sin x − 1
3 and sec y − 5

4, where x and y lie between 0 and �y2, evaluate sinsx 1 yd.

		  7.	 Prove the identities.

	 (a)	 tan � sin � 1 cos � − sec �	 (b)	
2 tan x

1 1 tan2x
− sin 2x

		  8.	� Find all values of x such that sin 2x − sin x and 0 < x < 2�.

		  9.	� Sketch the graph of the function y − 1 1 sin 2x without using a calculator.

a

¨
b

24

Figure For Problem �5

If you had difficulty with these problems, you should look at Appendix D of this book.

If you had difficulty with these problems, you should look at sections 1.1–1.3 of this book.

answers to diagnostic test D: trigonometry

	 1.	� (a)	 5�y3	 (b)	 2�y10

	 2.	� (a)	 1508 	 (b)	 3608y� < 114.68

	 3.	 2� cm

	 4.	� (a)	 s3 	 (b)	 21
2	 (c)	 2

	 5.	� (a)	 24 sin �	 (b)	 24 cos �

	 6.	 1
15 s4 1 6s2 d

	 8.	 0, �y3, �, 5�y3, 2�

	 9.	

4c3DTDax09
10/30/08

_π π x0

2
y
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1

By the time you finish this course, you will be able to calcu- 
late the length of the curve used to design the Gateway Arch 

in St. Louis, determine where a pilot should start descent  
for a smooth landing, compute the force on a baseball bat 

when it strikes the ball, and measure the amount of light 
sensed by the human eye as the pupil changes size.

A Preview of Calculus

calculus is fundamentally different from the mathematics that you have studied previ-
ously: calculus is less static and more dynamic. It is concerned with change and motion; it deals 
with quantities that approach other quantities. For that reason it may be useful to have an overview 
of the subject before beginning its intensive study. Here we give a glimpse of some of the main 
ideas of calculus by showing how the concept of a limit arises when we attempt to solve a variety 
of problems.
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2	 a preview of calculus

The Area Problem
The origins of calculus go back at least 2500 years to the ancient Greeks, who found 
areas using the “method of exhaustion.” They knew how to find the area A of any poly-
gon by dividing it into triangles as in Figure 1 and adding the areas of these triangles.

It is a much more difficult problem to find the area of a curved figure. The Greek  
method of exhaustion was to inscribe polygons in the figure and circumscribe polygons 
about the figure and then let the number of sides of the polygons increase. Figure 2 illus-
trates this process for the special case of a circle with inscribed regular polygons.

A¡™ ���A¶ ���AßA∞A¢A£

Let An be the area of the inscribed polygon with n sides. As n increases, it appears that 
An becomes closer and closer to the area of the circle. We say that the area of the circle 
is the limit of the areas of the inscribed polygons, and we write

A − lim 
n l `

An

The Greeks themselves did not use limits explicitly. However, by indirect reasoning, 
Eudoxus (fifth century bc) used exhaustion to prove the familiar formula for the area of 
a circle: A − �r 2.

We will use a similar idea in Chapter 5 to find areas of regions of the type shown in 
Figure 3. We will approximate the desired area A by areas of rectangles (as in Figure 4), 
let the width of the rectangles decrease, and then calculate A as the limit of these sums 
of areas of rectangles.

1
n

10 x

y

(1, 1)

10 x

y

(1, 1)

1
4

1
2

3
4

0 x

y

1

(1, 1)

10 x

y

y=≈

A

(1, 1)

The area problem is the central problem in the branch of calculus called integral cal-
culus. The techniques that we will develop in Chapter 5 for finding areas will also enable 
us to compute the volume of a solid, the length of a curve, the force of water against a 
dam, the mass and center of gravity of a rod, and the work done in pumping water out 
of a tank.

The Tangent Problem
Consider the problem of trying to find an equation of the tangent line t to a curve with 
equation y − f sxd at a given point P. (We will give a precise definition of a tangent line in 

A=A¡+A™+A£+A¢+A∞

A¡

A™

A£ A¢

A∞

FIGURE 1

FIGURE 2

TEC � In the Preview Visual, you  
can see how areas of inscribed and 
circumscribed polygons approximate 
the area of a circle.

FIGURE 3 FIGURE 4
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Chapter 2. For now you can think of it as a line that touches the curve at P as in Figure 5.)  
Since we know that the point P lies on the tangent line, we can find the equation of t if we 
know its slope m. The problem is that we need two points to compute the slope and we 
know only one point, P, on t. To get around the problem we first find an approximation 
to m by taking a nearby point Q on the curve and computing the slope mPQ of the secant 
line PQ. From Figure 6 we see that

1 	 mPQ −
 f sxd 2 f sad

x 2 a
	

Now imagine that Q moves along the curve toward P as in Figure 7. You can see that 
the secant line rotates and approaches the tangent line as its limiting position. This means 
that the slope mPQ of the secant line becomes closer and closer to the slope m of the tan-
gent line. We write

m − lim 
Q lP

mPQ

and we say that m is the limit of mPQ as Q approaches P along the curve. Because x 
approaches a as Q approaches P, we could also use Equation 1 to write

2 	 m − lim 
x l a

 
 f sxd 2 f sad

x 2 a
	

Specific examples of this procedure will be given in Chapter 2.
The tangent problem has given rise to the branch of calculus called differential calcu- 

lus, which was not invented until more than 2000 years after integral calculus. The main  
ideas behind differential calculus are due to the French mathematician Pierre Fer-
mat (1601–1665) and were developed by the English mathematicians John Wallis  
(1616–1703), Isaac Barrow (1630–1677), and Isaac Newton (1642–1727) and the Ger-
man mathematician Gottfried Leibniz (1646–1716).

The two branches of calculus and their chief problems, the area problem and the tan-
gent problem, appear to be very different, but it turns out that there is a very close con-
nection between them. The tangent problem and the area problem are inverse problems 
in a sense that will be described in Chapter 5.

Velocity
When we look at the speedometer of a car and read that the car is traveling at 48 miyh, 
what does that information indicate to us? We know that if the velocity remains constant, 
then after an hour we will have traveled 48 mi. But if the velocity of the car varies, what 
does it mean to say that the velocity at a given instant is 48 miyh?

In order to analyze this question, let’s examine the motion of a car that travels along a 
straight road and assume that we can measure the distance traveled by the car (in feet) at  
l-second intervals as in the following chart:

t − Time elapsed ssd 0 1 2 3 4 5

d − Distance sftd 0 2 9 24 42 71

0

y

x

P

y=ƒ

t

P

Q

t

0 x

y

y

0 xa x

ƒ-f(a)P{a, f(a)}

x-a

t

Q{x, ƒ}

FIGURE 5�   
The tangent line at P

FIGURE 6�   
The secant line at PQ

FIGURE 7�   
Secant lines approaching the  
tangent line
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4	 a preview of calculus

As a first step toward finding the velocity after 2 seconds have elapsed, we find the aver-
age velocity during the time interval 2 < t < 4:

 average velocity −
change in position

time elapsed

 −
42 2 9

4 2 2

 − 16.5 ftys

Similarly, the average velocity in the time interval 2 < t < 3 is

average velocity −
24 2 9

3 2 2
− 15 ftys

We have the feeling that the velocity at the instant t − 2 can’t be much different from the 
average velocity during a short time interval starting at t − 2. So let’s imagine that the dis- 
tance traveled has been measured at 0.l-second time intervals as in the following chart:

t 2.0 2.1 2.2 2.3 2.4 2.5

d 9.00 10.02 11.16 12.45 13.96 15.80

Then we can compute, for instance, the average velocity over the time interval f2, 2.5g:

average velocity −
15.80 2 9.00

2.5 2 2
− 13.6 ftys

The results of such calculations are shown in the following chart:

Time interval f2, 3g f2, 2.5g f2, 2.4g f2, 2.3g f2, 2.2g f2, 2.1g

Average velocity sftysd 15.0 13.6 12.4 11.5 10.8 10.2

The average velocities over successively smaller intervals appear to be getting closer to  
a number near 10, and so we expect that the velocity at exactly t − 2 is about 10 ftys. In 
Chapter 2 we will define the instantaneous velocity of a moving object as the limiting value  
of the average velocities over smaller and smaller time intervals.

In Figure 8 we show a graphical representation of the motion of the car by plotting the 
distance traveled as a function of time. If we write d − f std, then f std is the number of 
feet traveled after t seconds. The average velocity in the time interval f2, tg is

average velocity −
change in position

time elapsed
−

 f std 2 f s2d
t 2 2

which is the same as the slope of the secant line PQ in Figure 8. The velocity v when 
t − 2 is the limiting value of this average velocity as t approaches 2; that is,

v − lim 
t l 2

 
 f std 2 f s2d

t 2 2

and we recognize from Equation 2 that this is the same as the slope of the tangent line 
to the curve at P.

t

d

0 1 2 3 4 5

10

20

P{2, f(2)}

Q{ t, f(t)}

FIGURE 8
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	 a preview of calculus 	 5

Thus, when we solve the tangent problem in differential calculus, we are also solving 
problems concerning velocities. The same techniques also enable us to solve problems 
involving rates of change in all of the natural and social sciences.

The Limit of a Sequence
In the fifth century bc the Greek philosopher Zeno of Elea posed four problems, now 
known as Zeno’s paradoxes, that were intended to challenge some of the ideas concerning 
space and time that were held in his day. Zeno’s second paradox concerns a race between 
the Greek hero Achilles and a tortoise that has been given a head start. Zeno argued, as fol- 
lows, that Achilles could never pass the tortoise: Suppose that Achilles starts at position  
a1 and the tortoise starts at position t1. (See Figure 9.) When Achilles reaches the point 
a2 − t1, the tortoise is farther ahead at position t2. When Achilles reaches a3 − t2, the tor- 
toise is at t3. This process continues indefinitely and so it appears that the tortoise will 
always be ahead! But this defies common sense.

Achilles

tortoise

a¡ a™ a£ a¢ a∞

t¡ t™ t£ t¢

. . .

. . .

One way of explaining this paradox is with the idea of a sequence. The successive posi-
tions of Achilles sa1, a2, a3, . . .d or the successive positions of the tortoise st1, t2, t3, . . .d 
form what is known as a sequence.

In general, a sequence hanj is a set of numbers written in a definite order. For instance, 
the sequence

h1, 12 , 13 , 14 , 15 , . . .j

can be described by giving the following formula for the nth term:

an −
1

n

We can visualize this sequence by plotting its terms on a number line as in Fig- 
ure 10(a) or by drawing its graph as in Figure 10(b). Observe from either picture that the 
terms of the sequence an − 1yn are becoming closer and closer to 0 as n increases. In 
fact, we can find terms as small as we please by making n large enough. We say that the 
limit of the sequence is 0, and we indicate this by writing

lim 
n l `

1

n
− 0

In general, the notation

lim 
n l `

an − L

is used if the terms an approach the number L as n becomes large. This means that the num- 
bers an can be made as close as we like to the number L by taking n sufficiently large.

FIGURE 9

1

n1 2 3 4 5 6 7 8

10

a¡a™a£a¢

(a)

(b)

FIGURE 10
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6	 a preview of calculus

The concept of the limit of a sequence occurs whenever we use the decimal represen-
tation of a real number. For instance, if

 a1 − 3.1

 a2 − 3.14

 a3 − 3.141

 a4 − 3.1415

 a5 − 3.14159

 a6 − 3.141592

 a7 − 3.1415926

	 f

then	 lim
n l `

 an − �

The terms in this sequence are rational approximations to �.
Let’s return to Zeno’s paradox. The successive positions of Achilles and the tortoise 

form sequences hanj and htnj, where an , tn for all n. It can be shown that both sequences 
have the same limit:

lim 
n l `

an − p − lim 
n l `

tn

It is precisely at this point p that Achilles overtakes the tortoise.

The Sum of a Series
Another of Zeno’s paradoxes, as passed on to us by Aristotle, is the following: “A man 
standing in a room cannot walk to the wall. In order to do so, he would first have to 
go half the distance, then half the remaining distance, and then again half of what still 
remains. This process can always be continued and can never be ended.” (See Figure 11.)

1
2

1
4

1
8

1
16

Of course, we know that the man can actually reach the wall, so this suggests that per-
haps the total distance can be expressed as the sum of infinitely many smaller distances 
as follows:

3 	 1 −
1

2
1

1

4
1

1

8
1

1

16
1 ∙ ∙ ∙ 1

1

2n 1 ∙ ∙ ∙

FIGURE 11
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	 a preview of calculus	 7

Zeno was arguing that it doesn’t make sense to add infinitely many numbers together. 
But there are other situations in which we implicitly use infinite sums. For instance, in 
decimal notation, the symbol 0.3 − 0.3333 . . . means

3

10
1

3

100
1

3

1000
1

3

10,000
1 ∙ ∙ ∙

and so, in some sense, it must be true that

3

10
1

3

100
1

3

1000
1

3

10,000
1 ∙ ∙ ∙ −

1

3

More generally, if dn denotes the nth digit in the decimal representation of a number, then

0.d1d2 d3 d4 . . . −
d1

10
1

d2

102 1
d3

103 1 ∙ ∙ ∙ 1
dn

10n 1 ∙ ∙ ∙

Therefore some infinite sums, or infinite series as they are called, have a meaning. But 
we must define carefully what the sum of an infinite series is.

Returning to the series in Equation 3, we denote by sn the sum of the first n terms of 
the series. Thus

 s1 − 1
2 − 0.5

 s2 − 1
2 1 1

4 − 0.75

 s3 − 1
2 1 1

4 1 1
8 − 0.875

 s4 − 1
2 1 1

4 1 1
8 1 1

16 − 0.9375

 s5 − 1
2 1 1

4 1 1
8 1 1

16 1 1
32 − 0.96875

 s6 − 1
2 1 1

4 1 1
8 1 1

16 1 1
32 1 1

64 − 0.984375

 s7 − 1
2 1 1

4 1 1
8 1 1

16 1 1
32 1 1

64 1 1
128 − 0.9921875

	 f

 s10 − 1
2 1 1

4 1 ∙ ∙ ∙ 1 1
1024 < 0.99902344

	 f

 s16 −
1

2
1

1

4
1 ∙ ∙ ∙ 1

1

216 < 0.99998474

Observe that as we add more and more terms, the partial sums become closer and closer 
to 1. In fact, it can be shown that by taking n large enough (that is, by adding sufficiently 
many terms of the series), we can make the partial sum sn as close as we please to the num- 
ber 1. It therefore seems reasonable to say that the sum of the infinite series is 1 and to 
write

1

2
1

1

4
1

1

8
1 ∙ ∙ ∙ 1

1

2n 1 ∙ ∙ ∙ − 1
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8	 a preview of calculus

In other words, the reason the sum of the series is 1 is that

lim 
n l `

sn − 1

In Chapter 11 we will discuss these ideas further. We will then use Newton’s idea of 
combining infinite series with differential and integral calculus.

Summary
We have seen that the concept of a limit arises in trying to find the area of a region, the 
slope of a tangent to a curve, the velocity of a car, or the sum of an infinite series. In 
each case the common theme is the calculation of a quantity as the limit of other, easily 
calculated quantities. It is this basic idea of a limit that sets calculus apart from other 
areas of mathematics. In fact, we could define calculus as the part of mathematics that 
deals with limits.

After Sir Isaac Newton invented his version of calculus, he used it to explain the 
motion of the planets around the sun. Today calculus is used in calculating the orbits of 
satellites and spacecraft, in predicting population sizes, in estimating how fast oil prices 
rise or fall, in forecasting weather, in measuring the cardiac output of the heart, in cal-
culating life insurance premiums, and in a great variety of other areas. We will explore 
some of these uses of calculus in this book.

In order to convey a sense of the power of the subject, we end this preview with a list 
of some of the questions that you will be able to answer using calculus:

	 1.	� How can we explain the fact, illustrated in Figure 12, that the angle of elevation 
from an observer up to the highest point in a rainbow is 42°? (See page 285.)

	 2.	� How can we explain the shapes of cans on supermarket shelves? (See page 343.)

	 3.	 Where is the best place to sit in a movie theater? (See page 465.)

	 4.	� How can we design a roller coaster for a smooth ride? (See page 182.)

	 5.	 How far away from an airport should a pilot start descent? (See page 208.)

	 6.	� How can we fit curves together to design shapes to represent letters on a laser 
printer? (See page 657.)

	 7.	� How can we estimate the number of workers that were needed to build the Great 
Pyramid of Khufu in ancient Egypt? (See page 460.)

	 8.	� Where should an infielder position himself to catch a baseball thrown by an 
outfielder and relay it to home plate? (See page 465.)

	 9.	� Does a ball thrown upward take longer to reach its maximum height or to fall 
back to its original height? (See page 609.)

	 10.	� How can we explain the fact that planets and satellites move in elliptical orbits? 
(See page 868.)

	 11.	� How can we distribute water flow among turbines at a hydroelectric station so 
as to maximize the total energy production? (See page 980.)

	 12.	� If a marble, a squash ball, a steel bar, and a lead pipe roll down a slope, which 
of them reaches the bottom first? (See page 1052.)

rays from sun

observer

rays from sun

42°

138°

FIGURE 12
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9

Often a graph is the best 
way to represent a function 
because it conveys so much 

information at a glance. 
Shown is a graph of the 

vertical ground acceleration 
created by the 2011 

earthquake near Tohoku, 
Japan. The earthquake 

had a magnitude of 9.0 on 
the Richter scale and was 

so powerful that it moved 
northern Japan 8 feet closer 

to North America.

Functions and Models

The fundamental objects that we deal with in calculus are functions. This chapter pre­
pares the way for calculus by discussing the basic ideas concerning functions, their graphs, 
and ways of transforming and combining them. We stress that a function can be represented in 
different ways: by an equation, in a table, by a graph, or in words. We look at the main types of 
functions that occur in calculus and describe the process of using these functions as mathematical 
models of real-world phenomena.

1

Pictura Collectus/Alamy

Seismological Society of America
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10	 Chapter 1    Functions and Models

Functions arise whenever one quantity depends on another. Consider the following four 
situations.

A.	� The area A of a circle depends on the radius r of the circle. The rule that connects r 
and A is given by the equation A − �r 2. With each positive number r there is associ­
ated one value of A, and we say that A is a function of r.

B.	� The human population of the world P depends on the time t. The table gives esti­
mates of the world population Pstd at time t, for certain years. For instance,

Ps1950d < 2,560,000,000

But for each value of the time t there is a corresponding value of P, and we say that 
P is a function of t.

C.	� The cost C of mailing an envelope depends on its weight w. Although there is no 
simple formula that connects w and C, the post office has a rule for determining C 
when w is known.

D.	� The vertical acceleration a of the ground as measured by a seismograph during an 
earthquake is a function of the elapsed time t. Figure 1 shows a graph generated by 
seismic activity during the Northridge earthquake that shook Los Angeles in 1994. 
For a given value of t, the graph provides a corresponding value of a.

{cm/s@}

(seconds)5

50

10 15 20 25

a

t

100

30

_50

Calif. Dept. of Mines and Geology

Each of these examples describes a rule whereby, given a number (r, t, w, or t), 
another number (A, P, C, or a) is assigned. In each case we say that the second number 
is a function of the first number.

A function f  is a rule that assigns to each element x in a set D exactly one 
element, called f sxd, in a set E.

We usually consider functions for which the sets D and E are sets of real numbers. 
The set D is called the domain of the function. The number f sxd is the value of f  at x 
and is read “ f  of x.” The range of f  is the set of all possible values of f sxd as x varies 
throughout the domain. A symbol that represents an arbitrary number in the domain of a 
function f  is called an independent variable. A symbol that represents a number in the 
range of f  is called a dependent variable. In Example A, for instance, r is the indepen­
dent variable and A is the dependent variable.

Year
Population 
(millions)

1900 1650
1910 1750
1920 1860
1930 2070
1940 2300
1950 2560
1960 3040
1970 3710
1980 4450
1990 5280
2000 6080
2010 6870

FIGURE 1
Vertical ground acceleration  

during the Northridge earthquake

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



	 Section  1.1    Four Ways to Represent a Function	 11

It’s helpful to think of a function as a machine (see Figure 2). If x is in the domain of 
the function f, then when x enters the machine, it’s accepted as an input and the machine 
produces an output f sxd according to the rule of the function. Thus we can think of the 
domain as the set of all possible inputs and the range as the set of all possible outputs.

The preprogrammed functions in a calculator are good examples of a function as a 
machine. For example, the square root key on your calculator computes such a function. 
You press the key labeled s   (or sx ) and enter the input x. If x , 0, then x is not in the 
domain of this function; that is, x is not an acceptable input, and the calculator will indi­
cate an error. If x > 0, then an approximation to sx  will appear in the display. Thus the 
sx  key on your calculator is not quite the same as the exact mathematical function f  
defined by f sxd − sx .

Another way to picture a function is by an arrow diagram as in Figure 3. Each arrow 
connects an element of D to an element of E. The arrow indicates that f sxd is associated 
with x, f sad is associated with a, and so on.

The most common method for visualizing a function is its graph. If f  is a function 
with domain D, then its graph is the set of ordered pairs

hsx, f sxdd | x [ Dj

(Notice that these are input-output pairs.) In other words, the graph of f  consists of all 
points sx, yd in the coordinate plane such that y − f sxd and x is in the domain of f.

The graph of a function f  gives us a useful picture of the behavior or “life history” 
of a function. Since the y-coordinate of any point sx, yd on the graph is y − f sxd, we can 
read the value of f sxd from the graph as being the height of the graph above the point x 
(see Figure 4). The graph of f  also allows us to picture the domain of f  on the x-axis and 
its range on the y-axis as in Figure 5.

0

y � ƒ(x)

domain

range

{x, ƒ}

ƒ

f(1)
f(2)

0 1 2 x xx

y y

Example �1�  The graph of a function f  is shown in Figure 6.
(a)  Find the values of f s1d and f s5d.
(b)  What are the domain and range of f ?

Solution
(a)  We see from Figure 6 that the point s1, 3d lies on the graph of f, so the value of f  
at 1 is f s1d − 3. (In other words, the point on the graph that lies above x − 1 is 3 units 
above the x-axis.)

When x − 5, the graph lies about 0.7 units below the x-axis, so we estimate that 
f s5d < 20.7.

(b)  We see that f sxd is defined when 0 < x < 7, so the domain of f  is the closed inter­
val f0, 7g. Notice that f  takes on all values from 22 to 4, so the range of f  is

	 hy | 22 < y < 4j − f22, 4g	 ■

x
(input)

ƒ
(output)

f

FIGURE 2
Machine diagram for a function f  

f
D E

ƒ

f(a)a

x

FIGURE 3
Arrow diagram for f  

FIGURE 4 FIGURE 5

x

y

0

1

1

FIGURE 6

The notation for intervals is given in 
Appendix A.
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12	 Chapter 1    Functions and Models

Example �2�  Sketch the graph and find the domain and range of each function.
(a)  fsxd − 2x 2 1	 (b)  tsxd − x 2

Solution
(a)  The equation of the graph is y − 2x 2 1, and we recognize this as being the equa­
tion of a line with slope 2 and y-intercept 21. (Recall the slope-intercept form of the 
equation of a line: y − mx 1 b. See Appendix B.) This enables us to sketch a portion 
of the graph of f  in Figure 7. The expression 2x 2 1 is defined for all real numbers, so 
the domain of f  is the set of all real numbers, which we denote by R. The graph shows 
that the range is also R.

(b)  Since ts2d − 22 − 4 and ts21d − s21d2 − 1, we could plot the points s2, 4d and 
s21, 1d, together with a few other points on the graph, and join them to produce the 
graph (Figure 8). The equation of the graph is y − x 2, which represents a parabola (see 
Appendix C). The domain of t is R. The range of t consists of all values of tsxd, that is, 
all numbers of the form x 2. But x 2 > 0 for all numbers x and any positive number y is a 
square. So the range of t is hy | y > 0j − f0, `d. This can also be seen from Figure 8. ■

Example �3�  If f sxd − 2x 2 2 5x 1 1 and h ± 0, evaluate 
f sa 1 hd 2 f sad

h
.

Solution � We first evaluate f sa 1 hd by replacing x by a 1 h in the expression for f sxd:

f sa 1 hd − 2sa 1 hd2 2 5sa 1 hd 1 1

  − 2sa2 1 2ah 1 h2d 2 5sa 1 hd 1 1

  − 2a2 1 4ah 1 2h2 2 5a 2 5h 1 1

Then we substitute into the given expression and simplify:

f sa 1 hd 2 f sad
h

−
s2a2 1 4ah 1 2h2 2 5a 2 5h 1 1d 2 s2a2 2 5a 1 1d

h

  −
2a2 1 4ah 1 2h2 2 5a 2 5h 1 1 2 2a2 1 5a 2 1

h

−
4ah 1 2h2 2 5h

h
− 4a 1 2h 2 5

■

Representations of Functions
There are four possible ways to represent a function:

●  verbally	 (by a description in words)
●  numerically	 (by a table of values)
●  visually	 (by a graph)
●  algebraically    (by an explicit formula)

If a single function can be represented in all four ways, it’s often useful to go from one 
representation to another to gain additional insight into the function. (In Example 2, for 
instance, we started with algebraic formulas and then obtained the graphs.) But certain 
functions are described more naturally by one method than by another. With this in mind, 
let’s reexamine the four situations that we considered at the beginning of this section.

x

y=2x-1

0
-1

y

1
2

FIGURE 7

(_1, 1)

(2, 4)

0

y

1

x1

y=≈

FIGURE 8

The expression

f sa 1 hd 2 f sad
h

in Example 3 is called a difference 
quotient and occurs frequently in 
calculus. As we will see in Chapter 
2, it represents the average rate of 
change of f sxd between x − a and 
x − a 1 h.
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	 Section  1.1    Four Ways to Represent a Function	 13

A.	� The most useful representation of the area of a circle as a function of its radius is 
probably the algebraic formula Asrd − �r 2, though it is possible to compile a table 
of values or to sketch a graph (half a parabola). Because a circle has to have a posi­
tive radius, the domain is hr | r . 0j − s0, `d, and the range is also s0, `d.

B.	� We are given a description of the function in words: Pstd is the human population of 
the world at time t. Let’s measure t so that t − 0 corresponds to the year 1900. The 
table of values of world population provides a convenient representation of this func­
tion. If we plot these values, we get the graph (called a scatter plot) in Figure 9. It 
too is a useful representation; the graph allows us to absorb all the data at once. What 
about a formula? Of course, it’s impossible to devise an explicit formula that gives 
the exact human population Pstd at any time t. But it is possible to find an expression 
for a function that approximates Pstd. In fact, using methods explained in Section 
1.2, we obtain the approximation

Pstd < f std − s1.43653 3 109d ∙ s1.01395dt

��Figure 10 shows that it is a reasonably good “fit.” The function f  is called a mathe-
matical model for population growth. In other words, it is a function with an explicit 
formula that approximates the behavior of our given function. We will see, however, 
that the ideas of calculus can be applied to a table of values; an explicit formula is 
not necessary. 

5x10' 5x10'

P

t20 40 60 80 100 120 20 40 60
Years since 1900Years since 1900

80 100 120

P

t0 0

FIGURE 9 FIGURE 10

The function P is typical of the functions that arise whenever we attempt to apply 
calculus to the real world. We start with a verbal description of a function. Then we 
may be able to construct a table of values of the function, perhaps from instrument 
readings in a scientific experiment. Even though we don’t have complete knowledge 
of the values of the function, we will see throughout the book that it is still possible 
to perform the operations of calculus on such a function.

C.	� Again the function is described in words: Let Cswd be the cost of mailing a large enve­
lope with weight w. The rule that the US Postal Service used as of 2015 is as follows: 
The cost is 98 cents for up to 1 oz, plus 21 cents for each additional ounce (or less) 
up to 13 oz. The table of values shown in the margin is the most convenient repre­
sentation for this function, though it is possible to sketch a graph (see Example 10).

D.	� The graph shown in Figure 1 is the most natural representation of the vertical accel­
eration function astd. It’s true that a table of values could be compiled, and it is 
even possible to devise an approximate formula. But everything a geologist needs to 

t 
(years

since 1900)
Population 
(millions)

0 1650
10 1750
20 1860
30 2070
40 2300
50 2560
60 3040
70 3710
80 4450
90 5280

100 6080
110 6870

A function defined by a table of 
values is called a tabular function.

w (ounces) Cswd (dollars)

0 , w < 1  0.98

1 , w < 2  1.19

2 , w < 3  1.40

3 , w < 4  1.61

4 , w < 5  1.82
∙  ∙
∙  ∙
∙  ∙
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14	 Chapter 1    Functions and Models

PS   In setting up applied functions as 
in Example 5, it may be useful to review 
the principles of problem solving as 
discussed on page 71, particularly  
Step 1: Understand the Problem.

know— amplitudes and patterns — can be seen easily from the graph. (The same is  
true for the patterns seen in electrocardiograms of heart patients and polygraphs for 
lie-detection.)

In the next example we sketch the graph of a function that is defined verbally.

Example �4�  When you turn on a hot-water faucet, the temperature T  of the water 
depends on how long the water has been running. Draw a rough graph of T  as a func­
tion of the time t that has elapsed since the faucet was turned on.

SOLUTION � The initial temperature of the running water is close to room temperature 
because the water has been sitting in the pipes. When the water from the hot-water tank 
starts flowing from the faucet, T  increases quickly. In the next phase, T  is constant at 
the temperature of the heated water in the tank. When the tank is drained, T  decreases 
to the temperature of the water supply. This enables us to make the rough sketch of T  
as a function of t in Figure 11.	 ■

In the following example we start with a verbal description of a function in a physical 
situation and obtain an explicit algebraic formula. The ability to do this is a useful skill 
in solving calculus problems that ask for the maximum or minimum values of quantities.

Example �5�  A rectangular storage container with an open top has a volume of  
10 m3. The length of its base is twice its width. Material for the base costs $10 per 
square meter; material for the sides costs $6 per square meter. Express the cost of mate­
rials as a function of the width of the base.

SOLUTION � We draw a diagram as in Figure 12 and introduce notation by letting w and 
2w be the width and length of the base, respectively, and h be the height. 

The area of the base is s2wdw − 2w2, so the cost, in dollars, of the material for the 
base is 10s2w2 d. Two of the sides have area wh and the other two have area 2wh, so the 
cost of the material for the sides is 6f2swhd 1 2s2whdg. The total cost is therefore

C − 10s2w2 d 1 6f2swhd 1 2s2whdg − 20w2 1 36wh

�To express C as a function of w alone, we need to eliminate h and we do so by using 
the fact that the volume is 10 m3. Thus

ws2wdh − 10

which gives 	  h −
10

2w2 −
5

w2

Substituting this into the expression for C, we have

C − 20w2 1 36wS 5

w2D − 20w2 1
180

w

Therefore the equation

Cswd − 20w2 1
180

w
        w . 0

expresses C as a function of w.	 ■

Example �6�  Find the domain of each function.

(a)  f sxd − sx 1 2                   (b)  tsxd −
1

x 2 2 x

t

T

0

FIGURE 11

w

2w

h

FIGURE 12
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SOLUTION
(a)  Because the square root of a negative number is not defined (as a real number), 
the domain of f  consists of all values of x such that x 1 2 > 0. This is equivalent to 
x > 22, so the domain is the interval f22, `d.
(b)  Since

tsxd −
1

x 2 2 x
−

1

xsx 2 1d

and division by 0 is not allowed, we see that tsxd is not defined when x − 0 or x − 1. 
Thus the domain of t is

hx | x ± 0, x ± 1j

which could also be written in interval notation as

	 s2`, 0d ø s0, 1d ø s1, `d	 ■

The graph of a function is a curve in the xy-plane. But the question arises: Which 
curves in the xy-plane are graphs of functions? This is answered by the following test.

The Vertical Line Test  A curve in the xy-plane is the graph of a function of x if 
and only if no vertical line intersects the curve more than once.

The reason for the truth of the Vertical Line Test can be seen in Figure 13. If each 
vertical line x − a intersects a curve only once, at sa, bd, then exactly one function value 
is defined by f sad − b. But if a line x − a intersects the curve twice, at sa, bd and sa, cd,  
then the curve can’t represent a function because a function can’t assign two different 
values to a.

For example, the parabola x − y 2 2 2 shown in Figure 14(a) is not the graph of a 
function of x because, as you can see, there are vertical lines that intersect the parabola 
twice. The parabola, however, does contain the graphs of two functions of x. Notice 
that the equation x − y 2 2 2 implies y 2 − x 1 2, so y − 6sx 1 2 . Thus the upper 
and lower halves of the parabola are the graphs of the functions f sxd − sx 1 2  [from 
Example 6(a)] and tsxd − 2sx 1 2 . [See Figures 14(b) and (c).] 

We observe that if we reverse the roles of x and y, then the equation x − hsyd − y 2 2 2 
does define x as a function of y (with y as the independent variable and x as the depen­
dent variable) and the parabola now appears as the graph of the function h.

(b) y=œ„„„„x+2

_2 0 x

y

(_2, 0)

(a) x=¥-2

0 x

y

(c) y=_œ„„„„x+2

_2
0

y

x

Piecewise Defined Functions
The functions in the following four examples are defined by different formulas in dif­
ferent parts of their domains. Such functions are called piecewise defined functions.

a

x=a

(a, b)

0

a

(a, c)

(a, b)

x=a

0 x

y

x

y

(a) This curve represents a function.

(b) This curve doesn’t represent
     a function.

FIGURE 13

FIGURE 14

Domain Convention
If a function is given by a formula 
and the domain is not stated explic­
itly, the convention is that the domain 
is the set of all numbers for which 
the formula makes sense and defines 
a real number.
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16	 Chapter 1    Functions and Models

Example �7 � A function f  is defined by

f sxd − H1 2 x

x 2

if  x < 21

if  x . 21

Evaluate f s22d, f s21d, and f s0d and sketch the graph.

Solution � Remember that a function is a rule. For this particular function the rule is 
the following: First look at the value of the input x. If it happens that x < 21, then the 
value of f sxd is 1 2 x. On the other hand, if x . 21, then the value of f sxd is x 2.

Since 22 < 21, we have f s22d − 1 2 s22d − 3.

Since 21 < 21, we have f s21d − 1 2 s21d − 2.

Since 0 . 21, we have f s0d − 02 − 0.

How do we draw the graph of f ? We observe that if x < 21, then f sxd − 1 2 x,  
so the part of the graph of f  that lies to the left of the vertical line x − 21 must coin­
cide with the line y − 1 2 x, which has slope 21 and y-intercept 1. If x . 21,  
then f sxd − x 2, so the part of the graph of f  that lies to the right of the line x − 21 
must coincide with the graph of y − x 2, which is a parabola. This enables us to sketch 
the graph in Figure 15. The solid dot indicates that the point s21, 2d is included on the 
graph; the open dot indicates that the point s21, 1d is excluded from the graph.	 ■

The next example of a piecewise defined function is the absolute value function. 
Recall that the absolute value of a number a, denoted by | a |, is the distance from a to 0 
on the real number line. Distances are always positive or 0, so we have

| a | > 0        for every number a

For example,

| 3 | − 3      | 23 | − 3      | 0 | − 0      | s2 2 1 | − s2 2 1      | 3 2 � | − � 2 3

In general, we have

| a | − a    if  a > 0

| a | − 2a  if  a , 0

(Remember that if a is negative, then 2a is positive.)

Example �8 � Sketch the graph of the absolute value function f sxd − | x |.
SOLUTION � From the preceding discussion we know that

| x | − Hx

2x

if  x > 0

if  x , 0

Using the same method as in Example 7, we see that the graph of f  coincides with the 
line y − x to the right of the y-axis and coincides with the line y − 2x to the left of the 
y-axis (see Figure 16).	 ■

1

x

y

1_1 0

FIGURE 15

For a more extensive review of 
absolute values, see Appendix A.

x

y=| x |

0

y

FIGURE 16
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Point-slope form of the equation of 
a line:

y 2 y1 − msx 2 x1 d

See Appendix B.

Example �9�  Find a formula for the function f  graphed in Figure 17.

SOLUTION � The line through s0, 0d and s1, 1d has slope m − 1 and y-intercept b − 0, 
so its equation is y − x. Thus, for the part of the graph of f  that joins s0, 0d to s1, 1d, 
we have

f sxd − x        if  0 < x < 1

The line through s1, 1d and s2, 0d has slope m − 21, so its point-slope form is

y 2 0 − s21dsx 2 2d        or        y − 2 2 x

So we have 	 f sxd − 2 2 x        if  1 , x < 2

We also see that the graph of f  coincides with the x-axis for x . 2. Putting this infor-
mation together, we have the following three-piece formula for f :

f sxd − Hx

2 2 x

0

if  0 < x < 1

if  1 , x < 2

if  x . 2 ■

Example �10�  In Example C at the beginning of this section we considered the cost 
Cswd of mailing a large envelope with weight w. In effect, this is a piecewise defined 
function because, from the table of values on page 13, we have

Cswd −    

0.98

1.19

1.40

1.61

if  0 , w < 1

if  1 , w < 2

if  2 , w < 3

if  3 , w < 4
	 ∙
	 ∙
	 ∙

��The graph is shown in Figure 18. You can see why functions similar to this one are 
called step functions—they jump from one value to the next. Such functions will be 
studied in Chapter 2.	 ■

Symmetry
If a function f  satisfies f s2xd − f sxd for every number x in its domain, then f  is called 
an even function. For instance, the function f sxd − x 2 is even because

f s2xd − s2xd2 − x 2 − f sxd

The geometric significance of an even function is that its graph is symmetric with respect 
to the y-axis (see Figure 19). This means that if we have plotted the graph of f  for x > 0, 
we obtain the entire graph simply by reflecting this portion about the y-axis.

If f  satisfies f s2xd − 2f sxd for every number x in its domain, then f  is called an odd 
function. For example, the function f sxd − x 3 is odd because

f s2xd − s2xd3 − 2x 3 − 2f sxd

x

y

0 1

1

FIGURE 17

FIGURE 19�   
An even function

0 x_x

f(_x) ƒ

x

y

C

0.50

1.00

1.50

0 1 2 3 54 w

figure 18

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



18	 Chapter 1    Functions and Models

The graph of an odd function is symmetric about the origin (see Figure 20). If we already 
have the graph of f  for x > 0, we can obtain the entire graph by rotating this portion 
through 1808 about the origin.

Example �11�  Determine whether each of the following functions is even, odd, or 
neither even nor odd.
(a)  f sxd − x 5 1 x      (b)  tsxd − 1 2 x 4      (c)  hsxd − 2x 2 x 2 

SOLUTION
(a)	 f s2xd − s2xd5 1 s2xd − s21d5x 5 1 s2xd

 − 2x 5 2 x − 2sx 5 1 xd

 − 2f sxd

Therefore f  is an odd function.

(b)	 ts2xd − 1 2 s2xd4 − 1 2 x 4 − tsxd
So t is even.

(c)	 hs2xd − 2s2xd 2 s2xd2 − 22x 2 x 2

Since hs2xd ± hsxd and hs2xd ± 2hsxd, we conclude that h is neither even nor odd.	 ■

The graphs of the functions in Example 11 are shown in Figure 21. Notice that the 
graph of h is symmetric neither about the y-axis nor about the origin.

1

1 x

y

h1

1

y

x

g1

_1

1

y

x

f

_1

(a) (b) (c)

Increasing and Decreasing Functions
The graph shown in Figure 22 rises from A to B, falls from B to C, and rises again from C 
to D. The function f  is said to be increasing on the interval fa, bg, decreasing on fb, cg, 
and increasing again on fc, dg. Notice that if x1 and x2 are any two numbers between  
a and b with x1 , x2, then f sx1 d , f sx2 d. We use this as the defining property of an 
increasing function.

A

B

C

D

y=ƒ

f(x¡)

a

y

0 xx¡ x™ b c d

f(x™)

FIGURE 20   
An odd function

0
x

_x ƒ
x

y

figure 21

figure 22
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